
Prepose: Security and Privacy for
Gesture-Based Programming

MSR-TR-2014-146

Lucas Silva Figueiredo
Federal University of Pernambuco

Benjamin Livshits, David Molnar, and Margus Veanes
Microsoft Research

Abstract—With the rise of sensors such as the Mi-
crosoft Kinect, Leap Motion, and hand motion sensors
in phones such as the Samsung Galaxy S5, natural user
interface (NUI) has become practical. NUI raises two
key challenges for the developer: first, developers must
create new code to recognize new gestures, which is
a time consuming process. Second, to recognize these
gestures, applications must have access to depth and
video of the user, raising privacy problems. We address
both problems with Prepose, a novel domain-specific
language (DSL) for easily building gesture recognizers,
combined with a system architecture that protects
user privacy against untrusted applications by running
Prepose code in a trusted core, and only interacting
with applications via gesture events.

Prepose lowers the cost of developing new gesture
recognizers by exposing a range of primitives to de-
velopers that can capture many different gestures.
Further, Prepose is designed to enable static analysis
using SMT solvers, allowing the system to check se-
curity and privacy properties before running a gesture
recognizer. We demonstrate that Prepose is expressive
by creating novel gesture recognizers for 28 gestures in
three representative domains: physical therapy, tai-chi,
and ballet. We further show that matching user motions
against Prepose gestures is efficient, by measuring on
traces obtained from Microsoft Kinect runs.

Because of the privacy-sensitive nature of always-
on Kinect sensors, we have designed the Prepose lan-
guage to be analyzable: we enable security and privacy
assurance through precise static analysis. In Prepose,
we employ a sound static analysis that uses an SMT
solver (Z3), something that works well on Prepose
but would be hardly possible for a general-purpose
language. We demonstrate that static analysis of Pre-
pose code is efficient, and investigate how analysis time
scales with the complexity of gestures. Our Z3-based
approach scales well in practice: safety checking is
under 0.5 seconds per gesture; average validity checking
time is only 188 ms; lastly, for 97% of the cases, the
conflict detection time is below 5 seconds, with only
one query taking longer than 15 seconds.

I. Introduction

Over 20 million Kinect sensors are in use today, bring-
ing millions of people in contact with games and other
applications that respond to voice and gestures. In many
ways, this is only the beginning: other companies such as
Leap Motion and Prime Sense are bringing low-cost depth
and gesture sensing to consumer electronics. The newest

generation of smartphones such as Samsung Galaxy S5
supports rudimentary gestures as well.

Gesture store: User demand for these sensors is driven
by exiting new applications, ranging from immersive Xbox
games to purpose-built shopping solutions to healthcare
applications for monitoring elders. Each of these sensors
comes with an SDK which allows third-party developers
to build new and compelling applications. Several devices
such as Microsoft Kinect and Leap Motion use the App
Store model to deliver software to the end-user. Examples
of such stores include Leap Motion’s Airspace airspace.

com, Oculus Platform, and Google Glassware http://

glass-apps.org.

There are also App Stores for developer components,
such as the Unity 3D Asset store which offers develop-
ers the ability to buy models, object, and other similar
components (https://www.assetstore.unity3d.com). To-
day, when developers write their own gesture recogniz-
ers from scratch, they use machine learning methods,
or libraries from github and sourceforge. Our focus in
this paper is on gesture recognizers, which are integral
components of AR applications responsible for detecting
gestures performed by users.

An App Store distribution model provides a unique
opportunity to ensure the security and privacy of gestures
before they are unleashed on unsuspecting users. As such,
our approach in Prepose is to check gestures when they
are submitted to the gesture store. Figure 1 shows our
approach. Developers write gesture recognizers in a high-
level domain-specific language we call Prepose, then
submit them to the gesture store. Because our domain-
specific language has been carefully engineered, we can
perform precise and sound static analyses for a range of
security and privacy properties. The results of this analysis
tell us whether the submitted gesture is “definitely OK,”
“definitely not OK,”or, as may happen occasionally,“needs
attention from a human auditor.”

Privacy of always-on third-party applications: For
an always-on immersive application, access to the entire
video stream is an obvious source of privacy concerns.
These sensors are in people’s bedrooms, living rooms, and
offices, which makes the need to guard against malicious

gesture file static checking triage

.app

Z3 theorem
prover

Fig. 1: Checking submissions to a gesture store. Submis-
sions are marked as safe (green), unsafe (red), or need
human attention (blue).

GESTURE crossover-left-arm-stretch:
POSE relax-arms:

point your left arm down,
point your right arm down.

POSE stretch:
rotate your left arm 90 degrees counter

clockwise on the frontal plane,
touch your left elbow with your right hand.

EXECUTION:
relax-arms ,
slowly stretch and hold for 30 seconds.

Fig. 2: Gesture example: crossover-left-arm-stretch.

or buggy third-party software critically important, without
stifling developer productivity.

Gestures are an integral part of sensor-based always-
on application1. As such, building new gestures is a
fundamental part of software development. While, for
instance, the Kinect SDK already includes a number of
default gestures, developers typically need to add their
own. Gesture development is a tricky process, which often
depends on machine learning techniques requiring large
volumes of training data [8]. These heavyweight methods
are too expensive for many developers. Therefore, making
gesture development easier would unlock the creativity of
a larger class of developers.

Prepose language and runtime: This paper proposes
Prepose, a language and a runtime for authoring and
checking gesture-based applications. For illustration, a
code snippet supported by our system in shown in Fig-
ure 2. Prepose lowers the cost of developing new gestures
by exposing new primitives to developers that can express
a wide range of natural gestures.

Monitoring applications: Prepose are particularly
well-suited to what we call monitoring applications. For
example, Kinect Sports includes a tai-chi trainer, which
instructs users to struck tai-chi poses and gives real-time
feedback on how well they do, which is easily captured
by Prepose and supported by the runtime we have built.
For another example, Atlas5D is a startup that installs
multiple sensors in the homes of seniors and monitors

1To quote a blog entry: “After further experimenting with the
Kinect SDK, it became obvious what needed to come next. If you
were to create an application using the Kinect SDK, you will want to
be able to control the application using gestures (i.e. waving, swiping,
motions to access menus, etc.).” [23]

seniors for any signs of a fall or another emergency.
The chief purpose of these monitoring applications is to
match against a set of pre-defined gestures, while running
concurrently.

Analyzable gestures: At the heart of Prepose is the
idea of compiling gesture descriptions to formulas for an
SMT solver; we use the Z3 solver [20]. These formulas
capture the semantics of the gestures, enabling precise
analyses that boil down to satisfiability queries to the SMT
solver. The Prepose language has been designed to be
both expressive enough to support common gestures yet
restrictive enough to ensure that key properties remain
decidable. Prepose’s is focus on the ability to statically
and soundly analyze gesture-based programs:

1) Prepose validates that gestures have a basic mea-
sure of safety, i.e. they do not require the user to
overextend herself physically in ways that may be
dangerous;

2) Prepose ensures that gestures are internally valid,
i.e. do not require the user to both keep her arms up
and down;

3) Prepose tests whether a gesture conflicts with a
reserved system-wide gesture such as the Kinect
attention gesture;

4) Prepose finds potential conflicts within a set of
gestures such as two gestures that would both be
recognized from the same user movements.

Prepose has been designed with static analysis in mind,
which allows checking of gestures when they are submitted
to an app store, before being made available to users. Note
that a an application that uses the Kinect SDK written in
C++ or C# would generally require an extensive manual
audit to ensure the lack of privacy leaks and security flaws.

Applications of Prepose: To demonstrate the expres-
siveness of Prepose, we experiment with three domains
that involve different styles of gestures: physical therapy,
dance, and tai-chi. Given the natural syntax of Prepose
and a flat learning curve, we believe that other applications
can be added to the system quite easily. For each of these
gestures, we then performed a series of analyses enabled
by Prepose, including conflict detection, as well as safety,
security, and privacy checks.

A. Contributions

Our paper makes the following contributions:

• Prepose. Proposes a programming language and a
runtime for a broad range of gesture-based immersive
applications designed from the ground up with secu-
rity and privacy in mind.

• Static analysis. We propose a set of static analysis
algorithms designed to soundly find violations of im-
portant security and privacy properties. This analysis
is designed to be run within an gesture App Store
to prevent malicious third-party applications from
affecting the end-user.

2

• Expressiveness. To show the expressiveness of Pre-
pose, we demonstrate how to encode 28 gestures for 3
useful applications: therapy, dance, and tai-chi.

• Performance evaluation. Despite being written in
a domain-specific language (DSL), Prepose-based
gesture applications barely pay a price for the extra
security and privacy guarantees.

• Ingestion-time checking. Through comprehensive
experiments, we demonstrate that static analysis of
broad range of gestures is well within the time limits
imposed by App Store review processes. Our Z3-based
approach has more than acceptable performance. Pose
matching in Prepose averages 4 ms. Synthesizing
target poses ranges between 78 and 108 ms. Safety
checking is under 0.5 seconds per gesture. The aver-
age validity checking time is only 188.63 ms. Lastly,
for 90% of the cases, the conflict detection time is
below 0.17 seconds.

B. Paper Organization

The rest of the paper is organized as follows. Sec-
tion II provides some background on gesture authoring.
Section III gives an overview of Prepose concepts and
provides some motivating examples. Section IV describes
our analysis for security and privacy in detail. Section V
contains the details of our experimental evaluation. Sec-
tions VI and VII describe related work and conclude.

II. Background

Today, developers of NUI applications pursue two major
approaches to creating new gesture recognizers. First,
developers write code that explicitly encodes the gesture’s
movements in terms of the Kinect Skeleton or other similar
abstraction exposed by the platform. Second, developers
use machine learning approaches to synthesize gesture
recognition code from labeled examples. We discuss the
pros and cons of each approach each in turn.

Manually written: In this approach, the developer first
thinks carefully about the gesture movements in terms
of an abstraction exposed by the platform. For example,
the Kinect for Windows platform exposes a “skeleton”
that encodes a user’s joint positions. The developer then
writes custom code in a general-purpose programming
language such as C++ or C# that checks properties of
the user’s position and then sets a flag if the user moves
in a way to perform the gesture. For example, the Kinect
for Windows white paper on gesture development [7] shows
the following code for a simple punch gesture:

// Punch Gesture
if (vHandPos.z-vShoulderPos.z>fThreshold1 &&

fVelocityOfHand > fThreshold2 ||
fVelocityOfElbow > fThreshold3 &&
DotProduct(vUpperArm, vLowerArm) > fThreshold4)

{
bDetect = TRUE;

}

The code checks that the user’s hand is “far enough” away
from the shoulder, that the hand is moving “fast enough,”
that the elbow is also moving “fast enough,” and that the
angle between the upper and lower arm is greater than a
threshold. If all these checks pass, the code signals that a
punch gesture has been detected.

Manually-written poses require no special tools, data
collection, or training, which makes them easy to start
with. Unfortunately, they also have significant drawbacks.

• First, the code is hard to understand because it
typically reasons about user movements at a low level.
For example, the code uses a dot-product to check the
angle between the lower and upper arm instead of an
abstraction that directly returns the angle.

• Second, building these gestures requires a trained
programmer and maintaining code requires manually
tweaking threshold values, which may or may not
work well for a wider range of users. Third, it is
difficult to statically analyze this code because it is
written in a general purpose programming language,
so gesture conflicts or unsafe gestures must be de-
tected at runtime.

• Finally, the manually coded gesture approach requires
the application to have access to sensor data for the
purpose of recognizing gestures. This raises privacy
problems, as we have discussed: a malicious devel-
oper may directly embed some code to capture video
stream or skeleton data to send it to http://evil.com.

Machine learning: The leading alternative to manually-
coded gesture recognizers is to use machine learning ap-
proaches. In machine learning approaches, the developer
first creates a training set consisting of videos of people
performing the gesture. The developer then labels the
videos with which frames and which portions of the depth
or RGB data in the frame correspond to the gesture’s
movements. Finally, the developer runs an existing ma-
chine learning algorithm, such as AdaBoost, to synthesize
gesture recognition code that can be included in a pro-
gram. Figure 3 shows the overall workflow for the Visual
Gesture Builder, a machine learning gesture tool that
ships with the Kinect for Windows SDK. The developer
takes recordings of many different people performing the
same gesture, then tags the recordings to provide labeled
data. From the labeled data, the developer synthesizes a
classifier for the gesture. The classifier runs as a library in
the application.

Machine learning approaches have important benefits
compared to manually-written poses. If the training set
contains a diverse group of users, such as users of different
sizes and ages, the machine learning algorithm can “auto-
matically” discover how to detect the gesture for different
users without manual tweaking. In addition, improving the
gesture recognition becomes a problem of data acquisition
and labeling, instead of requiring manual tweaking by a
trained programmer. As a result, many Kinect developers

3

Fig. 3: Workflow for machine-learning based gesture recognition creation in the Kinect Visual Gesture Builder [7].

today use machine learning approaches.
On the other hand, machine learning has drawbacks as

well. Gathering the data and labeling it can be expensive,
especially if the developer wants a wide range of people in
the training set. Training itself requires setting multiple
parameters, where proper settings require familiarity with
the machine learning approach used. The resulting code
created by machine learning may be difficult to interpret
or manually “tweak” to create new gestures. Finally, just
as with manually written gestures, the resulting code is
even more difficult to analyze automatically and requires
access to sensor data to work properly.

III. Overview

We first show a motivating example in Section III-A.
Next, we discuss the architecture of Prepose and how
it provides security and privacy benefits (III-B). We then
introduce basic concepts of the Prepose language and
discuss its runtime execution (III-C). Finally, we discuss
the security and privacy issues raised by an App Store
for gestures, and show how static analysis can address
them (III-D).

A. Motivating Example

Existing application on Kinect: Figure 4a shows a
screen shot from the Reflexion Health physical therapy
product. Here, a Kinect for Windows is pointed at the user.
An on-screen animation demonstrates a target gesture for
the user. Along the top of the screen, the application gives
an English description of the gesture. Also on screen is
an outline that tracks the user’s actual position, enabling
the user to compare against the model. Along the top,

the program also gives feedback in English about what
movements the user must make to properly perform the
therapy gesture.

Reflexion is an example of a broader class of trainer
applications that continually monitor a user and give
feedback on the user’s progress toward gestures. The key
point is that trainer applications all need to continuously
monitor the user’s position to judge how well the user
performs a gesture. This monitoring is explicit in Reflexion
Health, but in other settings, such as Atlas5D’s eldercare,
the monitoring may be implicit and multiple gestures may
be tracked at once.

Encoding existing poses: We now drill down into an
example to show how applications can encode gesture
recognizers using the Prepose approach. Figure 4b shows
a common ballet pose, taken from an instructional book on
ballet. The illustration is accompanied by text describing
the pose. The text states in words that ankles should be
crossed, that arms should be bent at a certain angle, and
so on.

Gestures in Prepose: Figure 4 shows the Prepose code
which captures the ballet pose. Because of the way we
have designed the Prepose language, this code is close to
the English description of the ballet pose. A ballet trainer
application would include this code, which is then sent to
the Prepose runtime for interpretation.

B. Architectural Goals

Figure 5 shows the architecture of Prepose. Multiple
applications run concurrently. Each application has one
or more gestures written in the Prepose language. These
applications are not trusted and do not have access to

4

(a) A physical therapy application from Reflexion Health. The
application senses the user’s position using a Kinect sensor. On
the right, the application displays a visualization of the user’s
current position. Along the top, the application describes the
gesture the user must perform in English. The application also
provides feedback to the user on how to better perform the
gesture.

(b) Ballet poses.

GESTURE fourth-position-en-avant:
POSE cross-legs-one-behind-the-other:

put your left ankle behind your right ankle,
put your left ankle to the right

of your right ankle.
// do not connect your ankles.

POSE high-arc-arms-to-right:
point your arms down,
rotate your right arm 70 degrees up,
rotate your left elbow 20 degrees to your left,
rotate your left wrist 25 degrees to your right.

EXECUTION:
// fourth-position-en-avant-composed
stand-straight ,
point-feet-out ,
stretch-legs ,
cross-legs-one-behind-the-other ,
high-arc-arms-to-right.

(c) A sample ballet gesture written in Prepose. The gesture
defines two poses, which are specifications of a body position.
Then, the gesture execution specifies the sequence of poses
that must be matched to perform the gesture. The execution
includes poses that have been previously defined.

Fig. 4: Motivating example.

raw sensor data. Instead, applications register their gesture
code with a trusted Prepose runtime. This runtime is
responsible for interpreting the gestures given access to
raw depth, video, or other data about the user’s position.
When a gesture is recognized, the runtime calls back to

App 0

App 1

App 2

App 3

App 4

Prepose

interpreter

and

runtime

MSR Z3

constraint

solver

Prepose Code

Trust

boundary

Gesture Events

Skeleton

1

Fig. 5: Security architecture of Prepose.

the application which registered the gesture.

We draw a security boundary between the trusted
component and untrusted applications. Only Prepose
code crosses this boundary from untrusted applications to
trusted components. In our implementation, the trusted
component is written in managed C#, which makes it
difficult for an untrusted application to cause a memory
safety error. Our design therefore provides assurance that
untrusted applications will not be able to access private
sensor data directly, while still being able to define new
gesture recognizers.

Prepose has been designed for analyzability. Develop-
ers submit code written in the Prepose language to a
gesture App Store. During submission, we can afford to
spend significant time (say, an hour or two) on performing
static analyses. We now describe the specific security and
privacy properties we support, along with the analyses
needed to check them.

C. Basic Concepts in Prepose

In contrast to the approaches above, Prepose defines a
domain specific language for writing gesture recognizers.
The basic unit of the Prepose language is the pose. A
pose may contain transformations that specify the target
position of the user explicitly, or it may contain restric-
tions that specify a range of allowed positions. A pose
composes these transformations and restrictions to specify
a function that takes a body position and decides if the
position matches the pose. At runtime, Prepose applies
this function to determine if the user’s current body
position matches the pose. For poses that consist solely of
transformations, Prepose also at runtime synthesizes a
target position for the user, enabling Prepose to measure
how close the user is to matching the pose and provide
real time feedback to the user on how to match the pose.

A gesture specifies a sequence of poses. The user must
match each pose in the sequence provided. The gesture is
said to match when the last pose in the sequence matches.
At runtime, Prepose checks the user’s body position to
see if it matches the current pose.

5

In our current implementation, Prepose poses and
gestures are written in terms of the Kinect skeleton. The
Kinect skeleton is a collection of body joints, which are
distinguished points in a three-dimensional coordinate
space that correspond to the physical location of the user’s
head, left and right arms, and other body parts. Our
approach, however, could be generalized to other methods
of sensing gestures. For example, the Leap Motion hand
sensor exposes a “hand skeleton” to developers and we
could adapt the Prepose runtime to work with Leap
Motion or other hand sensors.

Poses: A pose contains either transformations or re-
strictions. A transformation is a function that takes as
input a Kinect skeleton and returns a Kinect skeleton.
Transformations in Prepose include “rotate” and “point”,
as in this example Prepose code:

rotate your left wrist 30 degrees to the front
rotate your right wrist 30 degrees to the front
point your right hand up

In the first line, the transformation “rotate” takes as
arguments the name of the user skeleton joint “left wrist,”
the amount of rotation “30 degrees,” and the direction
of rotation. The second line is similar. The third line
is a transformation “point” that takes as arguments the
name of a user skeleton joint and a direction “up.” When
applied to a skeleton position, the effect of all three
transformations is to come up with a single new target
skeleton for the user.

A restriction is a function that takes as input a Kinect
skeleton, checks if the skeleton falls within a range of
allowed positions, and then returns true or false. An
example restriction in Prepose looks like this:

put your right hand on your head

The intuition here is that “on your head” is a restriction
because it does not explicitly specify a single position.
Instead, a range of allowed positions, namely those there
the hand is within a threshold distance from the head, is
denoted by this function. Here, the function “put” takes
as arguments two joints, the “right hand” and the “head.”
The function returns true if the right hand is less than
a threshold distance from the head and false otherwise.
Poses can incorporate multiple transformations and mul-
tiple restrictions. The pose matches if all restrictions are
true and the user’s body position is also closer than a
threshold to the target position.

Gestures: Gestures consist of zero or more pose declara-
tions, followed by an execution sequence. For example, a
gesture for doing “the wave” might contain the following:

EXECUTION:
point-hands-up ,
point-hands-forward ,
point-hands-down.

That is, to do “the wave,” the user needs to put her hands
up, then move her hands from there to pointing forward,
and then finally point her hands downward. The gesture

C#

PREPOSE

Z3

put your arms down

public static BodyTransform ArmsDownTransform() {
 return new BodyTransform()
 .Compose(JointType.ElbowLeft, new Direction(0, -1, 0))
 .Compose(JointType.WristLeft, new Direction(0, -1, 0))
 .Compose(JointType.ElbowRight, new Direction(0, -1, 0))
 .Compose(JointType.WristRight, new Direction(0, -1, 0));

joints[‘elbow left’].Y > -1 ∧
joints[‘elbow left’].X = 0 ∧
joints[‘elbow left’].Z = 0

Fig. 6: Runtime correspondence: Prepose, C#, and Z3.

matches when the user successfully reaches the end of the
execution sequence.

Our Prepose runtime allows multiple gestures to be
loaded at a time. The execution sequence of a gesture can
use any pose defined by any loaded gesture, which allows
developers to build libraries of poses that can be shared
by different gestures.

Runtime execution: Figure 6 shows the stages of run-
time processing in Prepose. A high-level Prepose state-
ment is compiled into C# for the purposes of matching
and to a Z3 formula for the purposes of static analysis.

D. Gesture Safety and Privacy

At gesture submission time, we apply static analysis to
the submitted Prepose program. As we explain below,
this analysis amounts to queries resolved by the underlying
SMT solver, Z3.

Gesture safety: The first analysis is for gesture safety.
Just because it’s possible to ask someone to make a gesture
does not mean it is a good idea. A gesture may ask people
to overextend their limbs, make an obscene motion, or
otherwise potentially harm the user. To prevent an unsafe
gesture from being present in the store, we first define
safety restrictions. Safety restrictions are sets of body
positions that are not acceptable. Safety restrictions are
encoded as SMT formulas that specify disallowed positions
for Kinect skeleton joints.

Internal validity: It is possibly in Prepose to write a
gestures that can never be matched. For example, a gesture
that requires the user to keep their arms both up and down
contains an internal contradiction. We analyze Prepose
gestures to ensure they lack internal contradictions.

Reserved gestures: A special case of conflict detection
is detecting overlap with reserved gestures. For example,
the Xbox Kinect has a particular attention gesture that
opens the Xbox OS menu even if another game or program
is running. Checking conflicts with reserved gestures is
important because applications should not be able to
“shadow” the system’s attention gesture with its own
gestures.

Conflict detection: We say that a pair of gestures
conflicts if the user’s movements match both gestures

6

simultaneously. Gesture conflicts can happen accidentally,
because gestures are written independently by different
application developers. Alternatively, a malicious applica-
tion can intentionally register a gesture that conflicts with
another application. In Prepose, because all gestures
have semantics in terms of SMT formulas, we can ask a
solver if there exists a sequence of body positions that
matches both gestures. If the solver completes, then either
it certifies that there is no such sequence or gives an
example.

IV. Techniques

Figure 7 shows a BNF for Prepose which we currently
support. This captures how Prepose applications can be
composed out of gestures, gestures composed out of poses
and execution blocks, execution blocks can be composed
out of execution steps, etc2.

The grammar is fairly extensible: if one wish to support
other kinds of transforms or restrictions, one needs to
extend the Prepose grammar, regenerate the parser,
and provide runtime support for the added transform or
restriction. Note also that the Prepose grammar lends
itself naturally to the creation of developer tools such as
context-sensitive auto-complete in an IDE or text editor.

A. Compiling Prepose to SMT Formulas

Prepose compiles programs written in the Prepose
language to formulae in Z3, a state-of-the-art SMT solver.

Basic transforms: Figure 8 captures the principles of
translating Prepose transforms into Z3 terms. These
are update rules that define the 〈X,Y, Z〉 coordinates of
the joint to which the transformation is applied. Note
that transformations take the plane p and direction d as
parameters. These coordinate updates generally require a
trigonometric computation. Because of the lack of support
for these functions in Z3, we have implemented sin and cos
using lookup tables for commonly used values.

Compound transforms: To build complex transforms
that involve multiple joints, one can compose a list indi-
vidual joint transforms, as illustrated below in the way one
can encode the arms-down transform:

public static BodyTransform ArmsDownTransform () {
return new BodyTransform ()

.Compose(JointType.ElbowLeft , new Direction (0,-1,0))

.Compose(JointType.WristLeft , new Direction (0,-1,0))

.Compose(JointType.ElbowRight , new Direction (0,-1,0))

.Compose(JointType.WristRight , new Direction (0,-1,0))
;

}

Our runtime natively supports a number of compound
gestures such as this one, as requires by the possible
transforms in Figure 7.

Basic constraints: Figure 9 shows how Prepose restric-
tions are translated to Z3 constraints. Auxiliary functions

2For researchers who wish to extend Prepose, we have uploaded
an a Antlr version of the Prepose grammar to http://binpaste.
com/fdsdf

Declarations
app ::= APP id : (gesture .) + EOF
gesture ::= GESTURE id : pose + execution
pose ::= POSE id :

statement (, statement) * .
statement ::= transform | restriction
execution ::= EXECUTION :

(repeat the following steps number
executionStep(, executionStep) *
| executionStep(, executionStep) *)

executionStep ::= motionConstraint ?
id (and holdConstraint) ?

Transforms
transform ::= pointTo

| rotateP lane
| rotateDirection

pointTo ::= point your ?
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?

(to | to your) ? direction
rotateP lane ::= rotate your

bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?
number degrees
angularDirection on the ?
referenceP lane

rotateDirection ::= rotate your bodyPart
((, your ? bodyPart) *
and your ? bodyPart) ?
number degrees

(to | to your) ?
direction

Restrictions
restriction ::= dont ? touchRestriction

| dont ? putRestriction
| dont ? alignRestriction

touchRestriction ::= touch your ?
bodyPart with your ?
side hand

putRestriction ::= put your ?
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?
relativeDirection bodyPart

alignRestriction ::= align your ?
bodyPart((, your ? bodyPart) *
and your ? bodyPart) ?

Skeleton
bodyPart ::= joint | side arm | side leg | spine

| back | arms | legs | shoulders
| wrists | elbows | hands
| hands tips | thumbs | hips
| knees | ankles | feet | you

joint ::= centerJoint | side sidedJoint
centerJoint ::= neck | head | spine m id |

spine base | spine shoulder
side ::= left | right
sidedJoint ::= shoulder | elbow | wrist | hand |

hand tip | thumb | hip | knee |
ankle | foot

direction ::= up | down | front | back | side
angularDirection ::= clockwise | counter clockwise
referenceP lane ::= frontal plane | sagittal plane |

horizontal plane
relativeDirection ::= in front of your | behind your |

((on top of) |
above) your | below your |
to the side of your

motionConstraint ::= slowly | rapidly
holdConstraint ::= hold for number seconds
repeat ::= repeat number times

Fig. 7: BNF for Prepose. The start symbol is app.

Angle and Distance that are further compiled down into
Z3 terms are used as part of compilation. Additionally,
thresholds thangle and thdistance are used to define how
closely the current positions match. These thresholds can
be tuned in the runtime, as shown in Prepose Explorer

7

Rotate-Frontal+

Rotate-Frontal(j, a, p, d)
p = Frontal d = Clockwise

j.Y = cos(a) · j.Y + sin(a) · j.Z
j.Z = −sin(a) · j.Y + cos(a) · j.Z

Rotate-Frontal-

Rotate-Frontal(j, a, p, d)
p = Frontal d = CounterClockwise

j.Y = cos(a) · j.Y − sin(a) · j.Z
j.Z = sin(a) · j.Y + cos(a) · j.Z

Rotate-Sagittal+

Rotate-Sagittal(j, a, p, d)
p = Sagittal d = Clockwise

j.X = cos(a) · j.X + sin(a) · j.Y
j.Y = −sin(a) · j.X + cos(a) · j.Y

Rotate-Sagittal-

Rotate-Sagittal(j, a, p, d)
p = Sagittal d = CounterClockwise

j.X = cos(a) · j.X − sin(a) · j.Y
j.Y = sin(a) · j.X + cos(a) · j.Y

Rotate-Horizontal+

Rotate-Horizontal(j, a, p, d)
p = Horizontal d = Clockwise

j.X = cos(a) · j.X + sin(a) · j.Z
j.Z = −sin(a) · j.X + cos(a) · j.Z

Rotate-Horizontal-

Rotate-Horizontal(j, a, p, d)
p = Horizontal d = CounterClockwise

j.X = cos(a) · j.X − sin(a) · j.Z
j.Z = sin(a) · j.X + cos(a) · j.Z

Fig. 8: Transformations translated into Z3 terms.

in Figure 10.

B. Security and Privacy

By design, Prepose is amenable to sound static rea-
soning by translating queries into Z3 formulae. Below we
show how to convert key security and privacy properties
into Z3 queries.

Basic gesture safety: The goal of these restrictions is
to make sure we “don’t break any bones” by allowing
the user to follow this gesture. We define a collection of
safety restrictions pertaining to the head, spine, shoulders,
elbows, hips, and legs. We denote by RS the compiled
restriction, the set of all states that are allowed under our
safety restrictions. The compiled restriction RS is used to
test whether for a given gesture G

∃b ∈ B : ¬RS(G(b))

in other words, does there exist a body which fails to
satisfy the conditions of RS after applying G.

Inner validity: We also want to ensure that our gesture
are not inherently contradictory, in other words, is it the
case that all sequences of body positions will fail to match
the gesture. An example of a gesture that has an inner
contradiction, consider

put your arms up;
put your arms down;

Obviously both of these requirements cannot be sat-
isfied at once. In the Z3 translation, this will give

Align
Align(j1, j2)

Γ ` Angle(j1, j2) < thalign

LowerThan
LowerThan(j)

Γ ` j.Y < sin(thangle)

Put-Front
Put-Front(j1, j2, d) ∧ (d = InFrontOfYour)

Γ ` j1.Z > j2.Z + thdistance

Put-Behind
Put-Behind(j1, j2, d) ∧ (d = BehindYour)

Γ ` j1.Z < j2.Z − thdistance

Put-Right
Put-Right(j1, j2, d) ∧ (d = ToTheRightOfYour)

Γ ` j1.X > j2.X + thdistance

Put-Left
Put-Left(j1, j2, d) ∧ (d = ToTheLeftOfYour)

Γ ` j1.X < j2.X − thdistance

Put-Top
Put-Top(j1, j2, d) ∧ (d = OnTopOfYour)

Γ ` j1.Y > j2.Y + thdistance

Put-Below
Put-Below(j1, j2, d) ∧ (d = BelowYour)

Γ ` j1.Y < j2.Y − thdistance

Touch
Touch(j1, j2)

Γ ` Distance(j1 < j2) < thdistance

KeepAngle
KeepAngle(j1, j2)

Γ ` Γ ` Angle(j1 < j2) < thangle

Fig. 9: Restrictions translated into Z3 terms.

rise to a contradiction: joint[”rightelbow”].Y = 1 ∧
joint[”rightelbow”].Y = −1. To find possible contradic-
tions in gesture definitions, we use the following query:

∀b ∈ B : (G(b) is unsatisfiable).

Protected gestures: Several NUI systems include so-
called “system attention positions” that users invoke to
get privileged access to the system. These are the AR
equivalent of Ctrl-Alt-Delete on a Windows system. For
example, the Kinect on Xbox has a Kinect Guide posi-
tions that brings up a special system menu no matter
which game is currently being played. For Google Glass,
a similar utterance is “Okay Glass.” On Google Now on a
Motorola X phone, the utterance is “Okay Google.”

We want to make sure than Prepose gesture do not
attempt to redefine system attention positions.

∃b ∈ B, s ∈ S : G(b) = s.

where S ⊂ B is the set of pre-defined system attention
positions.

Conflict detection: Conflict detection, in contrast, in-
volves two possibly interacting gestures G1 and G2.

∃b ∈ B : G1(b) = G2(b).

Optionally, one could also attempt to test whether com-
positions of gestures can yield the same outcome. For

8

Application Gestures Poses LOC URL

Therapy 12 28 225 http://pastebin.com/ARndNHdu
Ballet 11 16 156 http://pastebin.com/c9nz6NP8
Tai-chi 5 32 314 http://pastebin.com/VwTcTYrW

Fig. 11: We have encoded 28 gestures in Prepose, across
three different applications. The table shows the number of
total poses and lines of Prepose code for each application.
Each pose may be used in more than one gesture.

example, is it possible that G1 ◦ G2 = G3 ◦ G4. This can
also be operated as a query on sequences of bodies in B.

V. Experimental Evaluation

We built a visual gesture development and debugging
environment, which we call Prepose Explorer. Figure 10
shows a screen shot of our tool. On the left, a text entry
box allows a developer to write Prepose code with proper
syntax highlighting. On the right, the tool shows the user’s
current position in green and the target position in white.
On the bottom, the tool gives feedback about the current
pose being matched and how close the user’s position is to
the target. We used this tool to measure the expressiveness
of Prepose by creating 28 gestures in three different
domains.

We then ran benchmarks to measure runtime perfor-
mance and static analysis performance of Prepose. First,
we report runtime performance, including the amount of
time required to match a pose and the time to synthesize
a new target position. Then, we discuss the results of
benchmarks for static analysis.

A. Expressiveness

Because the Prepose language is not Turing-complete,
it has limitations on the gestures it can express. To
determine if our choices in building the language are
sufficient to handle useful gestures, we built gestures using
the Prepose Explorer. We picked three distinct areas:
therapy, tai-chi, and ballet, which together cover a wide
range of gestures. Figure 11 shows the breakdown of how
many gestures we created in each area, for 28 in total.

For example, Figure 12 shows some of the poses from tai-
chi captured by Prepose code. We chose tai-chi because
it is already present in Kinect for Xbox games such as
Your Shape: Fitness Evolved. In addition, tai-chi poses
require complicated alignment and non-alignment between
different body parts.

B. Pose Matching Performance

We used the Kinect Studio tool that ships with the
Kinect for Windows SDK to record depth and video traces
of one of the authors. We recorded a trace of performing
two representative gestures. Each trace was about 20
seconds in length and consisted of about 20,000 frames,
occupying about 750 MB on disk.

For each trace, we then measured the matching time:
the time required to evaluate whether the current user

Fig. 12: Examples tai-chi gestures we have encoded using
Prepose.

position matches the current target position. When a
match occurred, we also measured the pose transition
time: the time required to synthesize a new target pose, if
applicable.

Our results are encouraging. On the first frame, we
observed matching times between 78 ms and 155 ms,
but for all subsequent frames matching time dropped
substantially. For these frames, the median matching time
was 4 ms. with a standard deviation of 1.08 ms. This is
fast enough for real time tracking at 60 FPS (frames per
second).

For pose transition time, we observed a median time
of 89 ms, with a standard deviation of 36.5 ms. While this
leads to a “skipped” frame each time we needed to create
a new pose, this is still fast enough to avoid interrupting
the user’s movements.

C. Static Analysis Performance

Safety checking: Figure 13 shows a near-
linear dependency between the number of
steps in a gesture and time to check against
safety restrictions. Exploring the results further,

Intercept -4.44
NumTransforms 0.73
NumRestrictions -2.42
NumNegatedRestrictions -6.23
NumSteps 29.48

we performed a linear re-
gression to see the in-
fluence of other param-
eters such as the num-
ber of negative restric-
tions. The R2 value of the
fit is about 0.9550, and the coefficients are shown in the
table to the right. The median checking time is only 2 ms.
We see that safety checking is practical and, given how
fast it is, could easily be integrated into an IDE to give
developers quick feedback about invalid gestures.

9

Fig. 10: Screenshot of Prepose Explorer in action.

0

50

100

150

200

250

300

350

400

450

500

0 2 4 6 8 10 12 14 16

Time as a function of the number of steps

Fig. 13: Time to check for safety, in ms, as a function of
the number of steps in the underlying gesture.

Validity checking: Figure 14 shows another near-linear
dependency between the number of steps in a gesture and

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

Fig. 14: Time to check internal validity, in ms, as a
function on the number of steps in the underlying gesture.

the time to check if the gesture is internally valid. The
average checking time is 188.63 ms. We see that checking
for internal validity of gestures is practical and, given how
fast it is, could easily be integrated into an IDE to give
developers quick feedback about invalid gestures.

Conflict checking: We performed pairwise conflict check-
ing between 111 pairs of gestures from our domains.

10

97% of checks
are faster than 5

seconds

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 10 100 1,000 10,000 100,000

Fig. 15: Time to check conflicts for a pair of gestures
presented as a CDF. The x axis is seconds plotted on a
log scale.

Figure 15 shows the CDF of conflict checking times, with
the x axis in log scale. For 90% of the cases, the checking
time is below 0.170 seconds, while 97% of the cases took
less than 5 seconds and 99% less than 15 seconds. Only
one query out of the 111 took longer than 15 seconds. As a
result, with a timeout of 15 seconds, only one query would
need attention from a human auditor.

VI. Related Work

A. Gesture Building Tools

CrowdLearner [1] provides a crowd-sourcing way to
collect data from mobile devices usage in order to create
recognizers for tasks specified by the developers. This way
the sampling time during the application development is
shorter and the collected data should represent a better
coverage of real use scenarios in relation to the usual in-lab
sampling procedures. Moreover, it abstracts for developers
the classifier construction and population, requiring no
specific recognition expertise.

Gesture Script [18] provides a unistroke touch gesture
recognizer which combines training from samples with
explicit description of the gesture structure. By using the
tool, the developer is enabled to divide the input gestures
in core parts, being able to train them separately and
specify by a script language how the core parts are per-
formed by the user. This way, it requires less samples for
compound gestures because the combinations of the core
parts are performed by the classifier. The division in core
parts also eases the recovery of attributes (e.g. number of
repetitions, line length, etc.) which can be specified by the
developer during the creation of the gestures.

Proton [16] and Proton++ [15] present a tool directed
to multitouch gestures description and recognition. The
gestures are modeled as regular expressions and their
alphabet consists of the main actions (Down, Move and
Up), and related attributes e.g.: direction of the move
action; place or object in which the action was taken;
counter which represents a relative ID; among others. It is
shown that by describing gestures with regular expressions
and a concise alphabet it is possible to easily identify
ambiguity between two gestures previously to the test
phase.

CoGesT [9] presents a scheme to represent hand and
arms gestures on the space. It uses a grammar which
generates the possible descriptions, the descriptions are
based on common textual descriptions and related to the
coordinate system generated by the body aligned planes
(sagittal, frontal and horizontal). The transcription is
mainly related to relative positions and trajectories be-
tween them, relying on the form and not on functional clas-
sification of the gesture. Moreover it does not specify the
detailed position but more broad relations between body
parts. This way the specified gestures are not strongly
precise. On the other hand, it enables users to produce
an equivalent gestures by interpreting the description and
using their knowledge about gesture production.

BAP [5] approaches the task of coding body movements
with focus on the study of emotion expression. The oppo-
site way is performed, in which actors trained the system
by performing specific emotion representations and these
recorded frames were coded into poses descriptions. The
coding was divided into anatomic (explicating which part
of the body was relevant in the gesture) and form (de-
scribing how the body parts were moving). The movement
direction was described adopting the orthogonal body axis
(sagittal, vertical and transverse). Examples of coding:
Left arm action to the right; Up-down head shake; Right
hand at waist; etc.

Annotation of Human Gesture [21] proposes an ap-
proach for transcribing gestural movements by overlaying
a 3D body skeleton on the recorded actorsâĂŹ gestures.
This way, once the skeleton data is aligned with the
recorded data, the annotation can be created automati-
cally. It is limited to posing arms.

RATA [22] presents a tool to create recognizers for touch
and stylus gestures. The focus is on the easiness and low-
time consuming of the gesture recognition developing task.
The authors claim that within 20 minutes (and by adding
only two lines of code) developers and interaction designers
can add new gestures to their application.

EventHurdle [14] presents a tool for explorative proto-
typing of gesture use on the application. The tool is pro-
posed as an abstraction of the gathered sensor data, which
can be visualized as a 2D graphic input. The designer also
can specify the gesture in a provided graphical interface.
The main concept is that unistroke touch gestures can be
described as a sequence of trespassed hurdles.

11

GestureCoder [19] presents a tool for multi-touch ges-
ture creation from performed examples. The recognition is
performed by creating a state machine for the performed
gestures with different names. The change of states is
activated by some pre-coded actions: finger landing; lifting;
moving; and timeout. The ambiguity of recorded gestures
is solved by analyzing the motion between the gestures
using a decision tree.

GestureLab [4] presents a tool for building domain-
specific gesture recognizers. It focuses on pen unistroke
gestures by considering trajectory but also additional at-
tributes such as timing and pressure.

MAGIC [2] and MAGIC 2.0 [17] tool to help developers,
which are not expert in pattern recognition, to create ges-
ture interfaces. Focuses on motion gesture (using gathered
from motion sensors, targeted to mobile scenario). MAGIC
2.0 focuses on false-positive prediction for these types
of gestures. MAGIC comes with an “Everyday Gesture
Library” (EGL), which contains videos of people perform-
ing gestures. MAGIC uses the EGL to perform dynamic
testing for gesture conflicts, which is complementary to
our language-based static approach.

B. Sensing and Privacy

SurroundWeb [24] presents an immersive browser which
tackles privacy issues by reducing the required privileges.
The concept is based on a context sensing technology
which can render different web contents on different parts
of the room. In order to prevent the web pages to access
the raw data of the room SurroundWeb is proposed as a
rendering platform through the Room Skeleton abstrac-
tion (which consists on a list of possible room “screens”).
Moreover the SurroundWeb introduces a Detection Sand-
box as a mediator between webpages and object detection
code (never telling the webpages if objects were detected
or not) and natural user inputs (mapping the inputs into
mouse events to the webpage).

Darkly [13] proposes a privacy protection system to
prevent access of raw video data from sensors to untrusted
applications. The protection is performed by controlling
mechanisms over the acquired data. In some cases the
privacy enforcement (transformations on the input frames)
may reduce application functionality.

OS Support for AR Apps [6] and AR Apps with Recog-
nizers [12] discusses the access the AR applications usually
have to raw sensors and proposes OS extension to control
the sent data by performing the recognizer tasks itself.
This way the recognizer module is responsible to gather
the sensed data and to process it locally, giving only the
least needed privileges to AR applications.

MockDroid [3] proposes an OS modification for smart-
phones in which applications always ask the user to access
the needed resources. This way users are aware of which
information are being sent to the application whenever
they run it, and then can decide between the trade-off of
giving access or using the application functionality.

AppFence [10] proposes a tool for privacy control on
mobile devices which can block or shadow sent data to
applications in order to maintain the application up and
running but prevent sending on-device use only data.

What You See is What You Get [11] proposes a widget
which alerts users of which sensor is being requested by
which application.

VII. Conclusions

We introduced the Prepose language, which allows
developers to write high level gesture descriptions that
have semantics in terms of SMT formulas. To test expres-
siveness, we created 28 gesture recognizers in Prepose
across three important domains. Our architecture protects
security and privacy by preventing untrusted applications
from directly accessing raw sensor data; instead, they
register Prepose code with a trusted runtime. We also
showed that Prepose programs can be statically analyzed
quickly to check for safety, pairwise conflict, and conflicts
with system gestures. Both runtime matching in Prepose
as well as static conflict checking, both of which reduce
to Z3 queries, are sufficiently fast (milliseconds to several
seconds) to be deployed. By writing gesture recognizers
in a language designed from the ground up to support
security and privacy, we obtain strong guarantees without
sacrificing either performance or expressiveness.

Our Z3-based approach has more than acceptable per-
formance. Pose matching in Prepose averages 4 ms.
Synthesizing target poses ranges between 78 and 108 ms.
Safety checking is under 0.5 seconds per gesture. The
average validity checking time is only 188.63 ms. Lastly,
for 90% of the cases, the conflict detection time is be-
low 0.170 seconds, and 97% of cases less than 5 seconds,
with only one query taking more than 15 seconds.

References

[1] S. Amini and Y. Li. Crowdlearner: rapidly creating mobile rec-
ognizers using crowdsourcing. In Proceedings of the 26th annual
ACM symposium on User Interface Software and Technology
(UIST), 2013.

[2] D. Ashbrook and T. Starner. Magic: a motion gesture design
tool. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2159–2168. ACM, 2010.

[3] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. MockDroid:
trading privacy for application functionality on smartphones. In
Proceedings of the Workshop on Mobile Computing Systems and
Applications, 2011.

[4] A. Bickerstaffe, A. Lane, B. Meyer, and K. Marriott. Developing
domain-specific gesture recognizers for smart diagram environ-
ments. In Graphics Recognition. Recent Advances and New
Opportunities. Springer, 2008.

[5] N. Dael, M. Mortillaro, and K. R. Scherer. The body action
and posture coding system (bap): Development and reliability.
Journal of Nonverbal Behavior, 36(2), 2012.

[6] L. D’Antoni, A. Dunn, S. Jana, T. Kohno, B. Livshits, D. Mol-
nar, A. Moshchuk, E. Ofek, F. Roesner, S. Saponas, et al.
Operating system support for augmented reality applications.
Hot Topics in Operating Systems (HotOS), 2013.

12

[7] K. for Windows Team at Microsoft. Visual gesture
builder: A data-driven solution to gesture detection,
2014. https://onedrive.live.com/view.aspx?resid=
1A0C78068E0550B5!77743&app=WordPdf.

[8] S. Fothergill, H. Mentis, P. Kohli, and S. Nowozin. Instructing
people for training gestural interactive systems. In Proceedings
of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’12, 2012.

[9] D. Gibbon, R. Thies, and J.-T. Milde. CoGesT: a formal tran-
scription system for conversational gesture. In In Proceedings
of LREC 2004, 2004.

[10] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.
These aren’t the droids you’re looking for: retrofitting android to
protect data from imperious applications. In Proceedings of the
Conference on Computer and Communications Security, 2011.

[11] J. Howell and S. Schechter. What you see is what they get:
Protecting users from unwanted use of microphones, camera,
and other sensors. In In Proceedings of Web 2.0 Security and
Privacy Workshop. Citeseer, 2010.

[12] S. Jana, D. Molnar, A. Moshchuk, A. Dunn, B. Livshits, H. J.
Wang, and E. Ofek. Enabling fine-grained permissions for
augmented reality applications with recognizers. In Proceedings
of the 22nd USENIX Security Symposium, 2013.

[13] S. Jana, A. Narayanan, and V. Shmatikov. A Scanner Darkly:
Protecting user privacy from perceptual applications. In IEEE
Symposium on Security and Privacy, 2013.

[14] J.-W. Kim and T.-J. Nam. EventHurdle: supporting designers’
exploratory interaction prototyping with gesture-based sensors.
In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2013.

[15] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton++:
A customizable declarative multitouch framework. In Proceed-
ings of the 25th Annual ACM Symposium on User Interface
Software and Technology (UIST), 2012.

[16] K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. Proton:
Multitouch gestures as regular expressions. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, pages 2885–2894, New York, NY, USA, 2012. ACM.

[17] D. Kohlsdorf, T. Starner, and D. Ashbrook. MAGIC 2.0: A
web tool for false positive prediction and prevention for gesture
recognition systems. In Automatic Face & Gesture Recognition
and Workshops, 2011.

[18] H. Lü, J. Fogarty, and Y. Li. Gesture script: Recognizing
gestures and their structure using rendering scripts and interac-
tively trained parts. 2014.

[19] H. Lü and Y. Li. Gesture coder: a tool for programming multi-
touch gestures by demonstration. In Proceedings of the ACM
Conference on Human Factors in Computing Systems (CHI),
2012.

[20] L. D. Moura and N. Bjorner. Z3: An Efficient SMT Solver. In
Tools and Algorithms for Construction and Analysis of Systems
(TACAS), 2008.

[21] Q. Nguyen and M. Kipp. Annotation of Human Gesture using
3D Skeleton Controls. In LREC. Citeseer, 2010.

[22] B. Plimmer, R. Blagojevic, S. H.-H. Chang, P. Schmieder, and
J. S. Zhen. Rata: codeless generation of gesture recognizers.
In Proceedings of the 26th Annual BCS Interaction Specialist
Group Conference on People and Computers. British Computer
Society, 2012.

[23] M. Tsikkos and J. Glading. Writing a gesture
service with the Kinect for Windows SDK, 2011.
http://blogs.msdn.com/b/mcsuksoldev/archive/
2011/08/08/ writing-a-gesture-service-with-the
kinect-for-windows-sdk.aspx.

[24] J. Vilk, D. Molnar, E. Ofek, C. Rossbach, B. Livshits,
A. Moshchuk, H. J. Wang, and R. Gal. SurroundWeb: Least
Privilege for Immersive Web Rooms. Technical Report MSR-
TR-2014-25, February 2014. http://research.microsoft.
com/apps/pubs/default.aspx?id=209968.

13

